Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
BioTech (Basel) ; 11(3)2022 Aug 11.
Article in English | MEDLINE | ID: covidwho-1987659

ABSTRACT

Italy was one of the European countries most afflicted by the COVID-19 pandemic. From 2020 to 2022, Italy adopted strong containment measures against the COVID-19 epidemic and then started an important vaccination campaign. Here, we extended previous work by applying the COVID-19 Community Temporal Visualizer (CCTV) methodology to Italian COVID-19 data related to 2020, 2021, and five months of 2022. The aim of this work was to evaluate how Italy reacted to the pandemic in the first two waves of COVID-19, in which only containment measures such as the lockdown had been adopted, in the months following the start of the vaccination campaign, the months with the mildest weather, and the months affected by the new COVID-19 variants. This assessment was conducted by observing the behavior of single regions. CCTV methodology allows us to map the similarities in the behavior of Italian regions on a graph and use a community detection algorithm to visualize and analyze the spatio-temporal evolution of data. The results depict that the communities formed by Italian regions change with respect to the ten data measures and time.

2.
Netw Model Anal Health Inform Bioinform ; 10(1): 46, 2021.
Article in English | MEDLINE | ID: covidwho-1303386

ABSTRACT

Understanding the evolution of the spread of the COVID-19 pandemic requires the analysis of several data at the spatial and temporal levels. Here, we present a new network-based methodology to analyze COVID-19 data measures containing spatial and temporal features and its application on a real dataset. The goal of the methodology is to analyze sets of homogeneous datasets (i.e. COVID-19 data taken in different periods and in several regions) using a statistical test to find similar/dissimilar datasets, mapping such similarity information on a graph and then using a community detection algorithm to visualize and analyze the spatio-temporal evolution of data. We evaluated diverse Italian COVID-19 data made publicly available by the Italian Protezione Civile Department at https://github.com/pcm-dpc/COVID-19/. Furthermore, we considered the climate data related to two periods and we integrated them with COVID-19 data measures to detect new communities related to climate changes. In conclusion, the application of the proposed methodology provides a network-based representation of the COVID-19 measures by highlighting the different behaviour of regions with respect to pandemics data released by Protezione Civile and climate data. The methodology and its implementation as R function are publicly available at https://github.com/mmilano87/analyzeC19D.

3.
Int J Environ Res Public Health ; 17(12)2020 06 12.
Article in English | MEDLINE | ID: covidwho-597040

ABSTRACT

The coronavirus disease (COVID-19) outbreak started in Wuhan, China, and it has rapidly spread across the world. Italy is one of the European countries most affected by COVID-19, and it has registered high COVID-19 death rates and the death toll. In this article, we analyzed different Italian COVID-19 data at the regional level for the period 24 February to 29 March 2020. The analysis pipeline includes the following steps. After individuating groups of similar or dissimilar regions with respect to the ten types of available COVID-19 data using statistical test, we built several similarity matrices. Then, we mapped those similarity matrices into networks where nodes represent Italian regions and edges represent similarity relationships (edge length is inversely proportional to similarity). Then, network-based analysis was performed mainly discovering communities of regions that show similar behavior. In particular, network-based analysis was performed by running several community detection algorithms on those networks and by underlying communities of regions that show similar behavior. The network-based analysis of Italian COVID-19 data is able to elegantly show how regions form communities, i.e., how they join and leave them, along time and how community consistency changes along time and with respect to the different available data.


Subject(s)
Coronavirus Infections/epidemiology , Hospitalization/trends , Pneumonia, Viral/epidemiology , Betacoronavirus , COVID-19 , Data Interpretation, Statistical , Humans , Italy/epidemiology , Pandemics , SARS-CoV-2 , Spatio-Temporal Analysis
SELECTION OF CITATIONS
SEARCH DETAIL